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Introduction: PANS is a controversial clinical entity, consisting of a complex
constellation of psychiatric symptoms, adventitious changes, and expression of
various serological alterations, likely sustained by an autoimmune/inflammatory disease.
Detection of novel biomarkers of PANS is highly desirable for both diagnostic and
therapeutic management of affected patients. Analysis of metabolites has proven useful
in detecting biomarkers for other neuroimmune-psychiatric diseases. Here, we utilize
the metabolomics approach to determine whether it is possible to define a specific
metabolic pattern in patients affected by PANS compared to healthy subjects.

Design: This observational case-control study tested consecutive patients referred for
PANS between June 2019 to May 2020. A PANS diagnosis was confirmed according
to the PANS working criteria (National Institute of Mental Health [NIMH], 2010). Healthy
age and sex-matched subjects were recruited as controls.

Methods: Thirty-four outpatients referred for PANS (mean age 9.5 years; SD
2.9, 71% male) and 25 neurotypical subjects matched for age and gender,
were subjected to metabolite analysis. Serum samples were obtained from each
participant and were analyzed using Nuclear Magnetic Resonance (NMR) spectroscopy.
Subsequently, multivariate and univariate statistical analyses and Receiver Operator
Curves (ROC) were performed.

Results:. Separation of the samples, in line with the presence of PANS diagnosis,
was observed by applying a supervised model (R2X = 0.44, R2Y = 0.54, Q2 = 0.44,
p-value < 0.0001). The significantly altered variables were 2-Hydroxybutyrate, glycine,
glutamine, histidine, tryptophan. Pathway analysis indicated that phenylalanine, tyrosine,
and tryptophan metabolism, as well as glutamine and glutamate metabolism, exhibited
the largest deviations from neurotypical controls.
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Conclusion: We found a unique plasma metabolic profile in PANS patients, significantly
differing from that of healthy children, that suggests the involvement of specific patterns
of neurotransmission (tryptophan, glycine, histamine/histidine) as well as a more general
state of neuroinflammation and oxidative stress (glutamine, 2-Hydroxybutyrate, and
tryptophan-kynurenine pathway) in the disorder. This metabolomics study offers new
insights into biological mechanisms underpinning the disorder and supports research of
other potential biomarkers implicated in PANS.

Keywords: metabolomics, pediatric acute-onset neuropsychiatric syndrome, neuroinflammation, oxidative
stress, biomarkers

INTRODUCTION

Pediatric acute-onset neuropsychiatric syndrome (PANS) is a
clinically heterogeneous disorder first described in 2012 after
the modification of the Paediatric Autoimmune Neuropsychiatric
Disorders Associated with Streptococcal infections (PANDAS)
criteria (Swedo et al., 1998). The major clinical features of PANS
consist of an acute-onset obsessive-compulsive disorder and/or
severe eating restrictions, with at least two concomitant cognitive,
behavioral, or affective symptoms such as anxiety, irritability, or
depression (Swedo et al., 2012; Frankovich et al., 2015). These
children experience neuropsychiatric symptoms in temporal
association not only with GAS infection, but also with exposure to
a wide variety of other infections and environmental or metabolic
changes; thusly, the PANDAS diagnosis fell under the newly
established umbrella category PANS (Swedo et al., 2012). The
gender ratio is around 2:1, and symptoms usually commence in
early childhood (7.3 ± 2.7 years). Clinical presentations were
similar across sites, with all children presenting with acute-
onset OCD symptoms and a constellation of other symptoms
and disorders, including separation anxiety (86–92%), school
issues (75–81%), sleep disruptions (71%), tics (60–65%), urinary
symptoms (42–81%), and others (Swedo et al., 2015). As is
the case with PANDAS, PANS is thought to be sustained by
immune-mediated mechanisms (Swedo et al., 2015; Spinello
et al., 2016), specifically those of so-called molecular mimicry
occurring when pathogenic microorganisms express an antigenic
structure indistinguishable (in terms of the amino acid sequence
or three-dimensional structure) from self-antigens.

Under this rationale, the initiation of the symptomatic state
results from an event (e.g., Group A Streptococcal infection)
causing a localized immune response in the central nervous
system (CNS), and the chronic relapsing course is due to
the persistence of the immunological imbalance even after the
resolution of the acute phase of the infection (Swedo et al., 2015).
In PANS, various aetiological agents, including viruses (Hoekstra
et al., 2005), Mycoplasma pneumonia (Müller et al., 2004), and
Haemophilus influenza, supposedly act as triggers for activation
of the immune response, together with the consequent release
of chemical mediators of inflammation at the CNS level (Swedo
et al., 2012; Frankovich et al., 2015). Structural and Functional
abnormalities of the cortico-basal ganglia circuitry, similar to
that seen in those with acute Sydenham’s Chorea, have been
described in PANDAS. In particular, an enlarged striatal volume

(Giedd et al., 2000; Elia et al., 2005) and an inflammatory state
of the striatum, confirmed by positron emission tomography
using a marker of microglial activation (Kumar et al., 2015), has
been reported in PANDAS. A recent diffusion-weighted magnetic
resonance imaging study identified cerebral microstructural
differences in children with PANS in multiple brain structures
(including deep gray matter structures such as the thalamus, basal
ganglia, and amygdala) putatively related to a neuroinflammatory
state (Zheng et al., 2020). In cohorts of rigorously selected
subjects with PANS, evidence of post-infectious autoimmune
processes and/or a condition of neuroinflammation was observed
in over 80% of cases (Swedo et al., 2017).

A very recent paper showed that antibodies from children with
PANDAS bind specifically to striatal cholinergic interneurons
and alter their activity, sustaining the pathophysiology of
rapid-onset obsessive-compulsive symptoms (Xu et al., 2021).
Treatment of PANS involves different approaches: antibiotics
to remove the potential source of neuroinflammation, anti-
inflammatory and immunomodulatory treatments to regulate
the immune system, and psychiatric medications to provide
symptomatic relief (Swedo et al., 2015).

Despite this accumulating evidence, PANS is still regarded
as a controversial clinical entity, consisting of a complex
combination of psychiatric symptoms and adventitious changes
and the expression of various serological variables of an
autoimmune/inflammatory disease (Gagliano et al., 2020).
In this scenario, research for new specific biomarkers is
strongly desirable.

Metabolomics allows the simultaneous and relative
quantification of various metabolites within a given biological
sample (Mamas et al., 2011) through the application of
two sensitive and specific methodologies, Nuclear Magnetic
Resonance (NMR) (Smolinska et al., 2012) and Mass
Spectrometry (MS) (Dettmer et al., 2007). By systematically
identifying and quantifying the small molecule profile of a tissue
or biofluid sample, known as “the metabolome,” metabolomics
is thought to directly reflect the biochemical activity in a given
organism or biological sample at a specific point in time. In the
last decade, attempts have been made to use metabolomics to
identify biomarkers of the various CNS disorders (Quinones
and Kaddurah-Daouk, 2009; Hatano et al., 2016; Murgia et al.,
2017; Pedrini et al., 2019); for example levels of taurine, succinate
and other molecules like glycine and β-alanine were elevated in
autistic subjects compared to controls (Glinton and Elsea, 2019).
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Currently, there are no systematic metabolomics datasets for
PANS patients. A single case-study of a 10-year-old girl with
PANS showed several metabolic pathways related to dysbiosis
of microbial activity, protein biosynthesis, and amino acid
metabolism (Piras et al., 2020).

The present study aims to identify specific serum metabolomic
profiles in a sample of children clinically diagnosed with PANS,
measured through 1H-NMR spectroscopy.

MATERIALS AND METHODS

Study Population and Inclusion Criteria
PANS patients referred to the outpatient clinics of Child and
Adolescent Neuropsychiatric Unit "G. Brotz" Hospital Trust,
Cagliari (June 2019 to May 2020), were enrolled in this
observational study.

An extensive physical, neurological, and psychiatric
examination was performed. Moreover, a clinical laboratory test,
consisting of a complete blood count, renal and liver function
tests, mineral panel, thyroid indices, and inflammation blood
markers, was undertaken to exclude metabolic concomitants
or systemic diseases. All participants were assessed by a panel
of standardized scales and questionnaires encompassing the
Pediatric Acute Neuropsychiatric Symptom Scale (PANSS)
(Pandas Network, 2018) to screen the symptoms and
their severity. Details of the PANSS scale are reported in
Supplementary Materials.

Diagnosis of PANS was confirmed by two child psychiatrists
(AG and FC), according to the PANS working criteria defined
by experts convened at the National Institute of Mental Health
(NIH) in July 2010 (Swedo et al., 2012):

(I) Abrupt dramatic onset of OCD or severely restricted food
intake;

(II) Concurrent presence of additional neuropsychiatric
symptoms (with similarly severe and acute onset), from at
least two of the following seven categories:

(1) Anxiety;
(2) Emotional lability and/or depression;
(3) Irritability, aggression, and/or severely oppositional

behaviors;
(4) Behavioral (developmental) regression;
(5) Deterioration in school performance (related to

attention-deficit/hyperactivity disorder [ADHD]-like
symptoms, memory deficits, and cognitive changes);

(6) Sensory or motor abnormalities;
(7) Somatic signs and symptoms, including sleep

disturbances, enuresis, or urinary frequency;

(III) Symptoms not better explained by a known neurological or
medical disorder, such as Sydenham’s Chorea.

Exclusion criteria were the following: (I) occurrence of
immunological diseases or cancer; (II) presence of other medical
or neurological/psychiatric diseases; (III) active treatment
with psychoactive substances, non-steroidal anti-inflammatory

drugs or corticosteroid agents; (IV) patients’ unwillingness to
participate in the study.

Among a total of 52 consecutive outpatients referred for
PANS, 34 met the inclusion criteria of this study. The mean
age at recruitment was 9.5 years. (SD 2.9); the gender ratio
was 10/24 (71% male). The serum samples of the affected
patients were compared to the serum of 25 neurotypical subjects
matched for age and gender (mean age 12.12 years.; SD
2.1, 64% male), and living in the same geographic area as
the clinical group. The control group encompassed children
with no autoimmune pathologies, neurodevelopmental and
psychiatric disorders and with adequate academic achievement
and functional performance. The aim of the study was to compare
the metabolic profile of the two classes of patients, considering
both a model including all of the samples together and models
considering males and females separately, to underline possible
differences based on gender.

The study was conducted with the approval of the independent
Ethical Committee of Cagliari University Hospital (Prot.
PG/2019/7413 on 29/05/2019). All the parents and all children
older than 12 were given a full explanation of the study’s method
and purpose. The parents signed the consent form, agreeing to
participate, and to the data being published. Furthermore, the
research was conducted in accordance with the Declaration of
Helsinki, V edition (2000).

Sample Preparation for 1H-NMR
Ten milliliter of blood were collected from each subject and
were centrifuged at 2,500 g for 10 min at 4◦C. The obtained
serum samples were stored at−80◦C until analysis. Subsequently,
samples were thawed and treated with a modified Folch method
(Bligh and Dyer, 1959; Lorefice et al., 2019) to extract and
separate hydrophilic and lipophilic metabolites. 400 µL of each
serum sample were mixed with 600 µL of methanol, 600 µL
of chloroform, and 175 µL of Milli-Q water. The samples were
vortexed for 1 min and centrifuged for 30 min at 1700 g at room
temperature. Aliquots (10 µL) from each sample were used to
create a pool for quality control (QC) samples. The QC samples
were analyzed at the beginning and the end of the analysis. The
hydrophilic and hydrophobic phases were obtained. The water-
phase was divided into two aliquots and concentrated overnight
using a speed vacuum centrifuge.

1H-NMR Analysis
For the 1H-NMR analysis, 700 µL of the water-phase containing
low-weight molecules (amino acids, sugars, etc.) for each
sample were concentrated overnight in a speed-vacuum. The
concentrated water-phase was resuspended in 690 µL of D2O
phosphate buffer (pH 7.4) and 10 µL trimethylsilyl propanoic
acid (TSP) 5.07 mM. TSP was added to provide an internal
reference for the chemical shifts (0 ppm). A total of 650 µL of
the solution was transferred to a 5 mm NMR tube.

The samples were analyzed with a Varian UNITY INOVA
500 spectrometer (Agilent Technologies, Inc., Santa Clara,
CA, United States), which was operated at 499 MHz and
equipped with a 5 mm triple resonance probe with z-axis pulsed
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field gradients and an auto-sampler with 50 locations. One-
dimensional 1H-NMR spectra were collected at 300 K with a
pre-sat pulse sequence to suppress the residual water’s signal.
The spectra were recorded with a spectral width of 6,000 Hz; a
frequency of 2 Hz; an acquisition time of 1.5 s; a relaxation delay
of 2 ms; and a 90◦ pulse of 9.5 µs. The number of scans was 256.
Each Free Induction Decay (FID) was zero-filled to 64 k points
and multiplied by a 0.5 Hz exponential line broadening function.
The spectra were manually phased and baseline corrected. Using
MestReNova software (version 8.1, Mestrelab Research SL),
each 1H-NMR spectrum was divided into consecutive “bins” of
0.04 ppm. The spectral area investigated was the region between
0.6 and 8.6 ppm. The regions between 4.60 and 5.2 ppm and
between 5.24 and 6.6 ppm were excluded to remove variations
in the pre-saturation of the residual water resonance and spectral
regions of noise. To minimize adverse effects resulting from
the serum samples’ differing concentrations, the integrated area
within each bin was normalized to a constant sum of 100. The
final data set consisted of a 150 × 59 matrix. The columns
represent the normalized area of each bin (variables), and the
rows represent the samples (subjects).

Multivariate Statistical Analysis
Multivariate statistical analysis was performed on 1H-NMR data
with SIMCA-P software (ver.15.0, Sartorius Stedim Biotech,
Umea, Sweden; (Eriksson et al., 2013). The variables were Pareto
scaled to emphasize all metabolite signals and reduce the spectral
noise for the 1H-NMR analysis.

The initial data analyses were conducted using Principal
Component Analysis (PCA), which is used to explore the sample
distributions without classification. In particular, PCA analysis
was performed to observe intrinsic clusters and find outliers.
For this aim, the DmodX and Hotelling’s T2 tests were applied.
The PCA model was performed including the QC samples to
corroborate the quality of the analysis.

Orthogonal Partial Least Square Discriminant Analysis
(OPLS-DA) was subsequently applied. OPLS-DA maximizes the
discrimination between samples assigned to different classes,
in this case discriminating between patients with PANS and
healthy subjects. OPLS-DA was also used to perform a gender
analysis. In particular, pathological male and female subjects
were separately compared to the matched controls. The aim of
this analysis was to find specific metabolic features to define
gender-related differences in the PANS profile which could
have influenced the final result. The OPLS-DA model removes
variability not relevant to class separation (Rousseau et al., 2008).
The variance and the predictive ability (R2X, R2Y, Q2) were
established to evaluate the suitability of the models. An additional
permutation test (n = 400) was performed to validate the model.
This rigorous test compares the fit of the original model with
that of randomly permuted models (Lindgren et al., 1996).
In particular, the permutation test evaluates model validity in
terms of the explained variance parameter (R2) and the cross-
validation parameter (Q2), that indicates fit and accuracy of
the prediction, respectively. A CV-ANOVA (analysis of variance
testing of cross-validated predictive residuals) test was performed
simultaneously to establish the significance of the OPLS-DA

model (p < 0.05). Through the multivariate analysis it was also
possible to investigate a potential linear relationship between
the metabolic profile (predictor variables, e.g., metabolites) and
the clinical parameters such as dependent variables like age and
scale of severity for PANS. For this aim, PLS projection to latent
structure regression models were performed.

Variables corresponding to a VIP (Variables Important in the
Projection) value of > 1 (a measure of their relative influence
on the model) from the OPLS-DA model, together with the
relative S-plot, were selected as the most important. Indeed, VIPs
of > 1 are the most relevant for explaining Y (assignment of
two classes). The selected variables were identified using the
Chenomx NMR Suite 7.1 (Chenomx Inc., Edmonton, Alberta,
Canada; Weljie et al., 2006). GraphPad Prism software (version
7.0, GraphPad Software, Inc., San Diego, CA, United States)
was used to perform the univariate statistical analysis of the
data. To verify the significance of the metabolites resulting from
multivariate statistical analysis, the U-Mann Whitney test was
performed, followed by ROC curves to test the sensitivity and
specificity of the metabolites with p-values < 0.05. ROC curves
are conventionally used to evaluate diagnostic performance in
clinical research. Moreover, Pearson correlation between the
clinical parameters (age and PANSS scale) was performed for
each significant metabolite.

Pathway Analysis
To help researchers identify the most relevant pathways
involved in the conditions under study, metabolic pathways
were generated using MetaboAnalyst 5.0 (Chong et al., 2019),
a web server designed to obtain metabolomic data analysis,
visualization, and biological interpretation1. In particular, the
pathway analysis module of MetaboAnalyst 5.0 helps researchers
identify the most relevant pathways involved in the conditions
under study using the high-quality Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolic pathways as the backend
knowledgebase. The Pathway Analysis module combines results
from powerful pathway enrichment analysis with pathway
topology analysis.

RESULTS

The Metabolic Signature of PANS
Patients Is Distinct From Healthy
Controls
Utilizing 1H-NMR analysis of serum samples, we identified a total
of 44 hydrophilic metabolites (Supplementary Figure 1). Each of
these metabolites, which were quantified for each patient, were
organized in a matrix to undergo multivariate analysis. Firstly,
non-supervised multivariate Principal Component Analysis
(PCA) was performed using the bins dataset. The aim of this
approach was to identify any outlying samples or any possible
sample cluster without previous classification. The obtained
score plot and the result of the Hotelling’s T2 test did not

1www.metaboanalyst.ca
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FIGURE 1 | Comparison between PANS and Controls patients. (A,B) OPLS-DA models of the analyzed classes. PANS (white circles) vs. Controls subjects (black
boxes) with the respective permutation test. (C) Bar graphs and (D) ROC curves of the metabolites exhibiting a p-value of < 0.05. U-Mann Whitney analysis was
used, and subsequently Holm-Bonferroni correction was applied. White bars represent the PANS class while black bars represent the control patients. *p < 0.05.

identify any outliers (data not shown). A separation of the
samples, in line with the presence of PANS diagnosis, was
subsequently observed after applying the supervised OPLS-DA
model (Figure 1A). These results were then validated using
the respective permutation test (Figure 1B). The statistical
parameters of the model were: R2X = 0.44, R2Y = 0.57,
Q2 = 0.44, p < 0.0001. The cumulative values of total Y-explained
variance (R2) and the Y-predictable variation (Q2) values of
the permutation test indicated proper modeling (Intercept
R2\Q2 = 0.17/−0.28). The same patient classification was
used to construct the supervised model considering males and
females separately (Supplementary Figure 2). The aim of this
analysis was to define possible gender differentials in metabolite
concentrations which could have influenced the result. A good
separation was also observed in these models, and we further
observed that the metabolites responsible for the separation were
the same as those causing separation in the complete model.
Moreover, demographic data such as age, and the phenotypic

severity were correlated with the total metabolic profile. A weak
correlation was found between age and the metabolic profile
(R2 was equal to 0.52) while a strong correlation was found
between the phenotypic severity parameters express as PANSS
scale evaluation and the metabolic profile (R2 was equal to 0.7).
The results are shown in Figures 2A,B.

Metabolite Analysis Highlights Energy
and Neurotransmission Pathways,
Corresponding to the Clinical
Symptomology of PANS
Subsequently, the most significant variables were identified
through analysis of the S-plot and through the corresponding
VIP-value of the complete supervised model. Variables with
a VIP-value of > 1 were identified with Chenomx and
underwent univariate statistical analysis with the U-Mann
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FIGURE 2 | (A) PLS correlation analysis between the metabolic profile of the enrolled subjects and the age. (B) PLS correlation analysis between the metabolic
profile of the affected patients and the PANSS severity score.

Whitney test. A subsequent Holm-Bonferroni correction for
multiple comparisons was applied.

2-Hydroxybutyrate and glycerol were found to be increased
in PANS patients, while asparagine, glycine, glutamine, histidine,
tryptophan, tyrosine were found to be decreased. These
metabolites exhibited the most significant differences between
PANS and Controls, denoted by a p-value of < 0.05 corrected
for multiple comparisons (Holm-Bonferroni test, Figure 1C),
and were selected to create ROC curves (Figure 1D); the
corresponding statistical parameters are reported in Table 1.
Considering the result of the PLS correlation analysis, we decided
to test the correlation between the PANSS scale and each
significantly altered metabolite in the PANS class compared to the
control subjects by conducting Pearson correlation analysis. Only
glycine (p = 0.03), tryptophan (p = 0.02) and tyrosine (p = 0.01)
were found to be significantly correlated with the severity of the
syndrome (Figure 3).

Pathway Enrichment Indicates the
Involvement of Inflammatory and
Neurotransmitter Pathways in PANS
The discriminant metabolites of the comparison between
PANS and controls which passed the Holm-Bonferroni
correction (2-hydroxybutyrate, asparagine, glutamine, glycerol,
glycine, histidine, tryptophan, and tyrosine) were used to
perform the pathways analysis and the enrichment analysis.
MetaboAnalyst was used to characterize the altered pathways
in the PANS group. Compared to Controls, the most altered
pathways that we considered for the interpretation of the
data were histidine metabolism, phenylalanine, tyrosine and
tryptophan metabolism, glutathione metabolism, glycine, serine
and threonine metabolism, alanine, aspartate and glutamate
metabolism, glutamine, and glutamate metabolism, according
to the parameters suggested by the software including pathway
impact and p-value (Figure 4).

DISCUSSION

The metabolomics approach applied in this study allowed the
identification of a set of hydrophilic metabolites that appears to
represent a specific pattern characterizing the PANS condition.
This pattern was independent of the gender of the patients, as
demonstrated by our results. Moreover, through the statistical
tools employed by this study we can hypothesize that the
age of the enrolled subjects weakly correlate with changes in
metabolic profile, while a significant correlation was found
between the severity scale of PANS and the metabolic profile
of the affected patients. The current lack of reliable biomarkers
for PANS leads us to consider our data as an important starting
point in understanding the pathological features of this complex

TABLE 1 | Statistical parameters of the univariate analysis from the comparisons
between PANS and Controls.

Metabolites PANS p-value p-value
corrected

ROC-CURVE

AUC Std. Er CI p-value

Serum PANS vs. Control

2-OH-Butyrate + 0.01 0.05 0.71 0.07 0.6–0.8 0.01

Acetone + 0.04 0.09 0.66 0.07 0.5–0.8 0.04

Alanine − 0.04 0.09 0.66 0.07 0.5–08 0.04

Asparagine − 0.01 0.05 0.70 0.07 0.6–0.8 0.01

Dimethylamine − 0.04 0.09 0.66 0.07 0.5–0.8 0.04

Glycerol + 0.01 0.05 0.69 0.07 0.5–0.8 0.01

Glycine − 0.001 0.01 0.72 0.06 0.6–0.9 0.002

Glutamine − 0.008 0.05 0.71 0.07 0.5–0.8 0.01

Histidine − 0.003 0.03 0.73 0.06 0.6–0.9 0.003

Isoleucine − 0.03 0.09 0.67 0.07 0.5–0.8 0.03

Tryptophan − 0.003 0.03 0.73 0.07 0.6–0.8 0.004

Tyrosine − 0.006 0.04 0.72 0.07 0.6–0.8 0.007

U-Mann Whitney test, Holm-Bonferroni correction for multiple comparisons and
ROC curves were performed.
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FIGURE 3 | Pearson correlation analysis between the concentrations of the
significant metabolites and the PANSS severity score. Only glycine,
tryptophan and tyrosine showed a significant correlation with the clinical
parameter considered.

syndrome. Metabolomics profiles are considered the omics layer
most proximal to phenotype (Patti et al., 2012; Haas et al., 2017):
In contrast to genetic variants, metabolomics profile can be either
a cause or a consequence of the phenotype of interest. Following
this reasoning, analysis of the putative role of specific metabolites
and altered pathways may help to define a comprehensive
metabolic pattern of the disorder, which, in turn, may be of help
in determining specific biomarkers.

The amino acid tryptophan (Trp) was found at significantly
lower serum concentrations in patients with PANS than
in controls. More interestingly, though, this metabolite also
negatively correlated with the severity of the syndrome as
demonstrated by the result of the Person correlation. The
pathways analysis confirmed an alteration in Trp metabolism. In
recent years, Trp metabolism has been increasingly recognized as
central to the pathogenesis of many neuropsychiatric disorders.
In particular, a decrease in Trp level was found in major
depressive disorder (Moreno et al., 2010; Liu et al., 2015),
schizophrenia (Yao et al., 2010; Xuan et al., 2011) and exhaustion
disorder (Hadrévi et al., 2019). Our findings are in line with
these reports, suggesting that Trp metabolism may be common
to several neuropsychiatric conditions that share several clinical
features with PANS, such as irritability, anxiety, emotional lability
and thought disturbances.

The predominant pathway of Trp metabolism in humans
is the Kynurenine Pathway (KP) (Dantzer, 2017): several
tryptophan-kynurenine pathway metabolites have been
increasingly recognized as crucial facets immuneregulatory
mechanisms, neuroinflammation (Mándi and Vécsei, 2012)
and microglial activation, potentially related to severe
neuropsychiatric disorders (Horikawa et al., 2010) such as
depression (Dantzer, 2017), psychosis and Autism Spectrum
Disorder (ASD) (Olloquequi et al., 2018).

This putative mechanism is supported by studies on animal
models; symptoms such as severe involuntary movement,
increased locomotor activity and persistently impaired active
avoidance learning, suggestive of a PANS-like phenotype,
can be induced by administering quinolinic acid (QA), a
potently neurotoxic metabolite of the KP, into the striatum
(Vécsei and Flint Beal, 1991).

As well as products of the KP pathway, tryptophan is also
the precursor to 5-hydroxytryptamine (5-HT) (Wichers and
Maes, 2004). Given this, it is reasonable to assume a direct
link between the two biomolecules. 5-HT has diverse roles
in memory, mood, anxiety, aggression, pain, sleep, and eating
behavior (Sandyk, 1992). Accordingly, 5-HT deficit has been
implicated in several neuropsychiatric illnesses (Bell et al.,
2001), including major depressive disorder, obsessive-compulsive
disorder, and anxiety (Baumgarten and Grozdanovic, 1998; Colle
et al., 2020). Interestingly, several conditions involving Trp
malabsorption (e.g., Hartnups disease) are often characterized
by symptoms such as psychosis or depression (Oyanagi et al.,
1967), as well as dietary Trp deprivation having been shown
to exacerbate ASD symptoms (McDougle, 1996). Moreover,
serotonin is the major substrate required for melatonin synthesis,
and consequently, serotonin deficiency reduces the synthesis
of melatonin (Zimmermann et al., 1993). This suggests a
possible explanation for the sleep disruption frequently occurring
in PANS, described as parasomnias (nightmares, nocturnal
pavor, sleepwalking or somnambulism), as well as difficulties in
initiating or maintaining sleep (early or intermediate insomnia),
early awakenings (terminal insomnia), REM sleep disorders such
as REM Sleep Without Atonia (RSWA), and sleep movement
disorders such as Periodic Limb Movement Disorder (PLMD)
(Santoro et al., 2018). Combined, these data strongly suggest
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FIGURE 4 | The metabolic pathways most altered in patients with PANS diagnosis were histidine metabolism, phenylalanine, tyrosine and tryptophan metabolism,
tyrosine metabolism, glutathione metabolism, glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, glutamine and glutamate
metabolism. (A) The size of the circles represent the pathway impact while the colors (varying from yellow to red) reflect the different levels of significance. (B) Also
the enrichment analysis performed with the same software, confirm the same altered metabolic nets.

that abnormal tryptophan metabolism may play a role in
the pathophysiology of PANS since the presentation of PANS
symptoms encompasses tics and anxiety, as well as obsessive-
compulsive and psychotic symptoms.

Glycine is another metabolite significantly decreased in
concentration (p = 0.0048) in the serum of patients with
PANS compared to healthy controls. The potential pivotal
role of this metabolite in PANS was also confirmed by its
direct correlation with the severity scale of this pathological
condition. Glycine’s biomolecular role is notable in several
psychiatric disorders (Rujescu and Giegling, 2016; Erjavec
et al., 2018; Humer et al., 2020). Glycine is widely distributed
in the mammalian CNS, functioning as an inhibitory or
excitatory neurotransmitter, depending on its localization.
Glycine is the main neurotransmitter in inhibitory interneurons
of the spinal cord, brainstem, and in other brain regions
involved in the processing of sensorimotor information and
locomotor behavior (Chatterton et al., 2002). Glycine can
activate two classes of distinct ligand-gated ion channels:
chloride-permeable inhibitory GlyRs (Gielen et al., 2015)
and cation-selective excitatory NMDARs. Electrophysiological,
immunocytochemical, and in-situ hybridization studies have
shown that GlyRs are prominent in the brainstem and spinal
cord (Altschuler et al., 1986; Alvarez et al., 1997) and detectable
also in the following brain regions: the prefrontal cortex,

hippocampus, amygdala, hypothalamus, cerebellum, nucleus
accumbens, ventral tegmental area, and substantia nigra (Ye et al.,
1998; McCool and Botting, 2000; Chattipakorn and McMahon,
2002). As an excitatory neurotransmitter, glycine acts as a co-
agonist of ionotropic NMDARs, allowing for depolarization,
removal of the magnesium blockade, and Na+/Ca2+ passage
through the ion channel, which ultimately enhances the
glutamatergic excitatory tone that is critical for learning and
neuronal plasticity (Nakazawa et al., 2004; Collingridge et al.,
2013). Notably, the affinity of glycine for NMDARs is significantly
higher than that of GlyRs (EC50 = 134 nM vs. EC50 = 270 mM)
(Chattipakorn and McMahon, 2002; Cubelos et al., 2014). Thusly,
under physiological conditions, endogenous glycine may exert a
mainly excitatory effect in the hippocampus, where both GlyRs
and NMDARs are expressed. Interestingly, an increase in serum
glycine levels measured by 1H-NMR spectra has been shown
to differentiate schizophrenia (with higher glycine levels) from
bipolar patients (with glycine plasma levels similar to controls),
suggesting an important role for glycine in regulating cognition
(Tasic et al., 2019) and affective regulation, an observation
parallelled in animal models of neuropsychiatric disorders
(Humer et al., 2020). Irritability, emotional lability, behavioral
regression has been shown to be a crucial component of the
PANS clinical presentation (Gagliano et al., 2020), rendering
the involvement of glycine metabolism in PANS biologically

Frontiers in Neuroscience | www.frontiersin.org 8 May 2021 | Volume 15 | Article 645267

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-645267 May 21, 2021 Time: 17:54 # 9

Murgia et al. Metabolomics in PANS

plausible. Remarkably, antibodies directed against extracellular
receptors on the synaptic surface, such as the NMDA receptor,
are known to lead to NMDA receptor hypofunction in patients,
resulting in behavioral and psychotic manifestations in specific
forms of autoimmune encephalitis (Endres et al., 2019).

Glutamine levels, and the activity of associated pathways
(glutamine and glutamate metabolism and aspartate and
glutamate metabolism), were also found to be lower in
PANS patients compared to the neurotypical control
group. Glutamine in the CNS plays an essential role in the
glutamate/GABA-glutamine cycle; it is transferred from
astrocytes to neurons, where it replenishes the inhibitory
and excitatory neurotransmitter pools (Masdeu et al., 2016).
Decreased glutamine plasma concentrations may be caused
by several factors, including acute inflammatory activity and
consecutive distribution abnormalities, and therefore is not, per
se, an indicator of actual shortage (Leke and Schousboe, 2016).
Glutamine is an essential nutrient in all rapidly proliferating
cells, including immune cells; it provides many different building
blocks for these cells and simultaneously maintains redox balance
by providing reducing equivalents, which are also necessary to
allow the appropriate functioning of the immune system.
Glutamine supplementation may be beneficial in patients with
a long-standing inflammatory activity that are not producing
sufficient quantities of glutamine either due to malnutrition
or because they cannot meet the demands of extremely severe
inflammatory illnesses (e.g., in ICU patients). More precise
information on glutamine’s role in PANS could reveal innovative
therapeutic approaches.

Histidine, which was also found to be at a significant
deficit in PANS patients, is a precursor of the ubiquitously
distributed neurohormone neurotransmitter histamine. In the
CNS, histamine is known to regulate sleep and wakefulness,
learning and memory, feeding, and energy (He et al., 2012;
Soeters and Grecu, 2012). A decrease in plasma histidine level
has been considered a metabolomic signature of schizophrenia,
although contrasting results have been reported on plasma and
brain histamine levels (Hu and Chen, 2017). Taken together, the
significant decrease of histidine observed in the present study
indicates the need for further investigation on a putative role of
histamine in the pathophysiology of PANS; histamine levels were
not measured in the present study, but the increasing availability
of histaminergic receptor modulators supports interest in this
neurotransmitter.

Finally, 2-Hydroxybutyrate was found to have significantly
increased concentration in the serum of PANS patients. This
metabolite is typically produced as a result of excessive
glutathione anabolism (Takahashi et al., 2006). Glutathione
is an antioxidant whose synthesis has been demonstrated to
undergo compensatory upregulation in the blood of individuals
experiencing increases in oxidative stress, such as smokers (Gall
et al., 2010), as well as in the aging brain (Agarwal et al.,
2019). The 2-Hydroxybutyrate increase observed in this sample
may indicate that oxidative stress may be considered a crucial
feature of PANS.

The specific plasma metabolites observed in the present
study might reflect particular changes in metabolic pathways

induced by inflammation, blood-brain barrier breakdown, and
dysregulation of energy metabolism. These processes may
activate a common final pathway that can be triggered by
different agents.

The results of the present study suggest unique plasma
metabolite profiles in PANS patients, significantly differing
from healthy children, showing abnormal levels of metabolites
associated with neurotransmission (tryptophan, glycine,
histamine/histidine) and generalized energy deficiency, oxidative
stress, neuroinflammation (glutamine, 2-Hydroxybutyrate and,
potentially, the tryptophan-kynurenine pathway). Overall,
the evidence provided by the present study is consistent
with the accumulating data supporting the presence of a
neuroinflammatory component in several psychiatric illnesses
(Tong et al., 2016). Inflammatory biomarkers have been found
in common neuropsychiatric outcomes (Najjar et al., 2013),
such as ADHD (Yuan et al., 2019), ASD (Dunn et al., 2019),
bipolar disorder (Xu et al., 2015), depression (Muneer, 2016),
and schizophrenia (Dowlati et al., 2010; Na et al., 2014).

However, the present work is not without limitations. We
focused on a homogeneous group of children and adolescents
diagnosed with PANS; a comparison with patients presenting a
limited association of two or more PANS criteria, but not the
complete disorder, can strengthen our study.

Further analysis of patients with PANS, using additional
methods, such as Mass Spectrometry, may be able to identify
additional metabolites that cannot be detected by our NMR
approaches, such as lipophilic compounds.

More in-depth investigation on a larger cohort with
additional tools is needed to confirm these findings and support
their interpretation. Nevertheless, our results strongly suggest
the utility of metabolomics as a means to enhance PANS
biomarker research. We argue that serum metabolites can
ultimately provide a map of the regulation of the metabolic
pathways in the central nervous system of individuals
with PANS. This is due to the syndrome exhibiting altered
mechanistic biochemical patterns, linked to exposure to an
environmental stimulus (e.g., infectious agents or stressors)
with the capability of disrupting metabolism. This, in turn,
results in changes that can be captured as metabolic signatures
potentially providing information with regard to PANS
pathophysiology.

CONCLUSION

PANS is currently conceptualized as a complex syndrome
with several etiologies and disease mechanisms, encompassing
psychiatric symptoms and arising from inflammatory/immune
abnormalities triggered by a variety of agents (Swedo et al.,
2012; Frankovich et al., 2015). The specific plasma metabolites
observed in the present study might reflect specific changes
in metabolic pathways induced by inflammation, blood-brain
barrier breakdown, and dysregulation of energy metabolism.
These processes may activate a common final pathway that can
be triggered by different agents. In conclusion, the results of the
present study suggest unique plasma metabolite profiles in PANS

Frontiers in Neuroscience | www.frontiersin.org 9 May 2021 | Volume 15 | Article 645267

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-645267 May 21, 2021 Time: 17:54 # 10

Murgia et al. Metabolomics in PANS

patients, significantly differing from healthy children, showing
abnormal levels of metabolites associated with neurotransmission
(tryptophan, glycine, histamine/histidine) and generalized energy
deficiency, oxidative stress neuroinflammation (glutamine, 2-
Hydroxybutyrate and, potentially, the tryptophan-kynurenine
pathway). Taken together, our results strongly suggest the
utility of metabolomics as a means to enhance PANS
biomarker research.
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